Thermal Stability of Rare Earth Oxide Coated Superhydrophobic Microstructured Metallic Surfaces

نویسندگان

  • Anton Hassebrook
  • Michael J. Lucis
  • Jeffrey E. Shield
  • Craig Zuhlke
  • Troy Anderson
  • George Gogos
  • Sidy Ndao
چکیده

In this paper, we present a method of generating nearly superhydrophobic surfaces from Femtosecond Laser Surface Processed (FLSP) metallic substrates and the study of their thermal stability at high temperatures. Using an FLSP process, hierarchical micro/nano structures were fabricated on stainless steel 316 after which a 200 nm Cerium Oxide (CeO2) film was sputtered onto the surface. Before CeO2 deposition, the contact angle of sample was measured. Post CeO2 deposition, the contact angles were measured again. As a result of the cerium oxide deposition, the contact angle of the originally hydrophilic FLSP surface turned near superhydrophobic with an equilibrium contact angle of approximately 140 o . Subsequently, the coated surfaces were annealed in air. The surface maintained its high contact angle from room temperature to about 160 o C, after which it lost its hydrophobicity due to hydrocarbon burn off. For each annealing temperature, we monitored the chemical composition for the cerium oxidecoated FLSP surface using energy dispersive x-ray spectroscopy (EDS) and X-ray diffraction (XRD). Under a nitrogen rich annealing environment, the nearly superhydrophobic FLSP metallic surface maintained its high contact angle up to temperatures as high as 350 o C. To further understand the physics behind the observed phenomenon, we investigated two additional samples of polished stainless steel 310 again coated with 200 nm of CeO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of va...

متن کامل

Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agav...

متن کامل

Superhydrophobic materials and coatings: a review.

Over the past few years, the scientific community, as well as the world's coatings industry has seen the introduction of oxide/polymer-based superhydrophobic surfaces and coatings with exceptional water repellency. Online videos have caught the public's imagination by showing people walking through mud puddles without getting their tennis shoes wet or muddy, and water literally flying off coate...

متن کامل

Formation of Solution-derived Hydroxyapatite Coatings on Titanium Alloy in the Presence of Magnetron-sputtered Alumina Bond Coats

Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and calcium phosphate ceramic materials and coatings are widely used in medicine and dentistry because of their ability to enhance the tissue response to implant surfaces and promote bone ingrowth and osseoconduction processes. The deposition conditions have a great influence on the structure and biofunctionality of calcium phosphate coatings. Corrosion proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015